Issue 4, 2024

A Ru/RuO2 heterostructure boosting electrochemistry-assisted selective benzoic acid hydrogenation

Abstract

Electrocatalytic hydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) at ambient temperature and pressure has been recognized as a promising alternative to thermal hydrogenation since water is required as the hydrogen source. So far, only a few Pt-based electrocatalysts have been developed in acidic electrolyte. To overcome the limitations of reactant solubility and catalyst corrosion, herein, carbon fiber-supported Ru electrocatalysts with abundant Ru/RuO2 heterojunctions were fabricated via cyclic electrodeposition between −0.8 and 1.1 V vs. Ag/AgCl. In an alkaline environment, a Ru/RuO2 catalyst achieves an excellent ECH reactivity in terms of high BA conversion (100%) and selectivity towards CCA (100%) within 180 min at a current density of 200/3 mA cm−2, showing exceptional reusability and long-term stability. 1-Cyclohexenecarboxylic acid (CEA) was identified as the reaction intermediate, whose the selectivity is governed by the applied potential. Kinetic studies demonstrate that ECH of BA over Ru/RuO2 follows a Langmuir–Hinshelwood (L–H) mechanism. In situ Raman spectroscopy and theoretical calculations reveal that the Ru/RuO2 interface enhances the adsorption strength of CEA, thereby facilitating the production of fully hydrogenated CCA. This work provides a deep understanding of the ECH pathway of BA in alkaline media, and gives a new methodology to fabricate heterostructure electrocatalysts.

Graphical abstract: A Ru/RuO2 heterostructure boosting electrochemistry-assisted selective benzoic acid hydrogenation

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Oct 2023
Accepted
13 Dec 2023
First published
21 Dec 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 1384-1392

A Ru/RuO2 heterostructure boosting electrochemistry-assisted selective benzoic acid hydrogenation

Z. Cao, C. Wang, Y. Sun, M. Liu, W. Li, J. Zhang and Y. Fu, Chem. Sci., 2024, 15, 1384 DOI: 10.1039/D3SC05312A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements