Issue 13, 2024

Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy

Abstract

Smooth interfaces embedded with low surface free energy allow effortless sliding of beaded droplets of selected liquids—with homogeneous wettability. Such slippery interfaces display low or moderate contact angles, unlike other extremely liquid repellent interfaces (e.g. superhydrophobic). These slippery interfaces emerged as a promising alternative to extremely liquid repellent hierarchically rough interfaces that generally suffer from instability under severe conditions, scattering of visible light because of the hierarchically rough interface, entrapment of fine solid particulates in their micro-grooves and so on. However, a controlled and precise modulation of surface free energy and nanometric roughness is essential for designing a more compelling solid and dry antifouling interface. Here, we have unprecedentedly demonstrated the ability of covalent cross-linking chemistry for precise and simultaneous modulation of both essential surface free energy (∼49 mN m−1 to ∼22 mN m−1) and roughness (root mean square roughness from 30 nm to 3 nm) of a solid interface for achieving liquid, substrate, and process independent, robust slippery properties. The strategic selection of β-amino-ester linkage through a 1,4-conjugated addition reaction between amine and acrylate groups of a three component reaction mixture (dominated by a 61% (w/w) crosslinker) under ambient conditions provided a facile basis for associating various important and relevant properties—including self-cleaning ability, anti-smudge properties (against both water and oil-based inks), thermal stability (>300 °C), chemical stability, physical durability, optical transparency (∼95%) and so on. The embedded slippery properties of the coating remained unaffected at both low (0 °C) and high (100 °C) temperatures. Thus, the prepared coating would be appropriate to maintain the unperturbed performance of commercially available solar cell modules and other relevant objects under outdoor conditions.

Graphical abstract: Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
13 Nov 2023
Accepted
18 Feb 2024
First published
19 Feb 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 4938-4951

Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy

D. Sarkar, M. Dhar, A. Das, S. Mandal, A. Phukan and U. Manna, Chem. Sci., 2024, 15, 4938 DOI: 10.1039/D3SC06077B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements