Issue 4, 2024

Incorporation of a self-immolative spacer enables mechanically triggered dual payload release

Abstract

Polymers that release functional small molecules in response to mechanical force are promising materials for a variety of applications including drug delivery, catalysis, and sensing. While many different mechanophores have been developed that enable the triggered release of a variety of small molecule payloads, most mechanophores are limited to one specific payload molecule. Here, we leverage the unique fragmentation of a 5-aryloxy-substituted 2-furylcarbinol derivative to design a novel mechanophore capable of the mechanically triggered release of two distinct cargo molecules. Critical to the mechanophore design is the incorporation of a self-immolative spacer to facilitate the release of a second payload. By varying the relative positions of each cargo molecule conjugated to the mechanophore, dual payload release occurs either concurrently or sequentially, demonstrating the ability to fine-tune the release profiles.

Graphical abstract: Incorporation of a self-immolative spacer enables mechanically triggered dual payload release

Supplementary files

Article information

Article type
Edge Article
Submitted
27 Nov 2023
Accepted
19 Dec 2023
First published
20 Dec 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 1472-1479

Incorporation of a self-immolative spacer enables mechanically triggered dual payload release

Y. Tseng, T. Zeng and M. J. Robb, Chem. Sci., 2024, 15, 1472 DOI: 10.1039/D3SC06359C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements