Issue 16, 2024

Combinatorial discovery of antibacterials via a feature-fusion based machine learning workflow

Abstract

The discovery of new antibacterials within the vast chemical space is crucial in combating drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). However, the traditional approach of screening the entire chemical library in an ergodic manner can be laborious and time-consuming. Machine learning-assisted screening of antibacterials alleviates the exploration effort but suffers from the lack of reliable and related datasets. To address these challenges, we devised a combinatorial library comprising over 110 000 candidates based on the Ugi reaction. A focused library was subsequently generated through uniform sampling of the entire library to narrow down the preliminary screening scale. A novel feature-fusion architecture called the latent space constraint neural network was developed which incorporated both fingerprint and physicochemical molecular descriptors to predict the antibacterial properties. This integration allowed the model to leverage the complementary information provided by these descriptors and improve the accuracy of predictions. Three lead compounds that demonstrated excellent efficacy against MRSA while alleviating drug resistance were identified. This workflow highlights the integration of machine learning with the combinatorial chemical library to expedite high-quality data collection and extensive data mining for antibacterial screening.

Graphical abstract: Combinatorial discovery of antibacterials via a feature-fusion based machine learning workflow

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
01 Dec 2023
Accepted
08 Mar 2024
First published
26 Mar 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 6044-6052

Combinatorial discovery of antibacterials via a feature-fusion based machine learning workflow

C. Wang, Y. Wu, Y. Xue, L. Zou, Y. Huang, P. Zhang and J. Ji, Chem. Sci., 2024, 15, 6044 DOI: 10.1039/D3SC06441G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements