Issue 17, 2024

Wetting-enhanced adhesion of photo-polymerized supramolecular adhesives for both smooth and rough surfaces

Abstract

Efficient interactions between an adhesive and a substrate surface at the molecular level are the basis for the formation of robust adhesion, which substantially relies on interfacial wetting. However, strong adhesives usually improve cohesion but compromise interfacial properties. Herein, we have reported a kind of robust supramolecular adhesive based on the outstanding mobility and interfacial wettability of adhesive precursors. In situ fast photopolymerization endows supramolecular adhesives with more outstanding adhesion for both smooth and rough surfaces in air and underwater in contrast to their counterparts from thermal polymerization. In addition to their low viscosity and high monomer concentration, supramolecular adhesive precursors without any organic solvents possess well-defined hydrogen bonding interactions. These superior properties consistently contribute to the wetting of the substrate and the formation of adhesive polymers with high molecular weights. This work highlights that enhancing interfacial wetting between an adhesive and a substrate is a promising route to achieving robust adhesion.

Graphical abstract: Wetting-enhanced adhesion of photo-polymerized supramolecular adhesives for both smooth and rough surfaces

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Feb 2024
Accepted
27 Mar 2024
First published
04 Apr 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 6445-6453

Wetting-enhanced adhesion of photo-polymerized supramolecular adhesives for both smooth and rough surfaces

M. Zhao, J. Wu, F. Zeng, Z. Dong, X. Shen, Z. Hua and G. Liu, Chem. Sci., 2024, 15, 6445 DOI: 10.1039/D4SC01188K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements