Issue 28, 2024

Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation

Abstract

Late-stage modification of peptides could potentially endow peptides with significant bioactivity and physicochemical properties, and thereby provide novel opportunities for peptide pharmaceutical studies. Since tryptophan (Trp) bears a unique indole ring residue and plays various critical functional roles in peptides, the modification methods for tryptophan were preliminarily developed with considerable progress via transition-metal mediated C–H activation. Herein, we report an unprecedented tertiary amine catalyzed peptide allylation via the SN2′–SN2′ pathway between the N1 position of the indole ring of Trp and Morita–Baylis–Hillman (MBH) carbonates. Using this method that proceeds under mild conditions, we demonstrated an extremely broad scope of Trp-containing peptides and MBH carbonates to prepare a series of peptide conjugates and cyclic peptides. The reaction is amenable to either solid-phase (on resin) or solution-phase conditions. In addition, the modified peptides can be further conjugated with other biomolecules at Trp, providing a new handle for bioconjugation.

Graphical abstract: Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Feb 2024
Accepted
11 Jun 2024
First published
14 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 11099-11107

Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation

Y. Liu, G. Li, W. Ma, G. Bao, Y. Li, Z. He, Z. Xu, R. Wang and W. Sun, Chem. Sci., 2024, 15, 11099 DOI: 10.1039/D4SC01244E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements