Issue 22, 2024

KBa3M2F14Cl (M = Zr, Hf): novel short-wavelength mixed metal halides with the largest second-harmonic generation responses contributed by mixed functional moieties

Abstract

The development of short-wavelength nonlinear optical (NLO) materials is indispensable and urgently required for further applications. Halides have been disregarded as potential NLO materials with deep-ultraviolet (DUV) cutoff edges due to their weak second-harmonic generation (SHG) response and poor birefringence. Here, two novel and isostructural halides, KBa3M2F14Cl (M = Zr (KBZFC), Hf (KBHFC)), possess structures that are formed by isolated MF7 monocapped triangular prisms and dissociative K+, Ba2+, and Cl ions. Compared with reported metal halides that are transparent to the DUV region, KBZFC and KBHFC possess the strongest SHG responses (approximately 1, 0.9 × KH2PO4), which are contributed by the synergistic effect of MF7 (M = Zr, Hf) groups, Ba2+ cations, and Cl ions. The zero-dimensional structures favour sufficient birefringences (0.12, 0.10 @ 1064 nm) for phase-matchable (PM) behaviours. The discovery of KBZFC and KBHFC showcases the potential of NLO mixed metal halides transparent to the DUV region.

Graphical abstract: KBa3M2F14Cl (M = Zr, Hf): novel short-wavelength mixed metal halides with the largest second-harmonic generation responses contributed by mixed functional moieties

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
22 Feb 2024
Accepted
29 Apr 2024
First published
30 Apr 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 8500-8505

KBa3M2F14Cl (M = Zr, Hf): novel short-wavelength mixed metal halides with the largest second-harmonic generation responses contributed by mixed functional moieties

M. Yan, C. Hu, R. Tang, W. Yao, W. Liu and S. Guo, Chem. Sci., 2024, 15, 8500 DOI: 10.1039/D4SC01259C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements