Viologen-based solution-processable ionic porous polymers for electrochromic applications†
Abstract
Electrochromic porous thin films are promising for applications in smart windows and energy-efficient optical displays. However, their generally poor processing ability and excessive processing times remain grand challenges. Herein, we report the design and convenient synthesis of core-altered N-arylated viologens with aldehyde groups (πV-CHO) as new building blocks to prepare soluble, viologen-embedded ionic porous polymers. We also demonstrate that these polymers can be easily solution-processed by drop-coating to fabricate high-quality electrochromic films with tunable optoelectronic properties in a cost-effective fashion. The prepared films exhibit excellent electrochromic performance, including a low driving voltage (1.2–1.4 V), fast switching times (0.8–1.7 s), great coloration efficiency (73–268 cm2 C−1), remarkably high optical contrast up to 95.6%, long cycling stability, and tunable oxidation and reduction colors. This work sheds important light on a new molecular engineering approach to produce redox-active polymers with combined properties of intrinsic porosity, reversible and tunable redox activity, and solution processability. This provides the materials with an inherently broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.