Effects of O, S, and P in transition-metal compounds on the adsorption and catalytic ability of sulfur cathodes in lithium–sulfur batteries†
Abstract
Transition-metal compounds (TMCs) have recently become promising candidates as lithium–sulfur (Li–S) battery cathode materials because they have unique adsorption and catalytic properties. However, the relationship between the anionic species and performance has not been sufficiently revealed. Herein, using FeCoNiX (X = O, S, and P) compounds as examples, we systematically studied the effects of the anion composition of FeCoNiX compounds on the adsorption and catalytic abilities of sulfur cathodes in Li–S batteries. Adsorption tests and density functional theory calculations showed that the adsorption ability toward lithium polysulfides follows the order: FeCoNiP > FeCoNiO > FeCoNiS, while in situ ultraviolet-visible spectroscopy and cyclic voltammetry revealed that the catalytic ability for lithium polysulfide conversion follows the order: FeCoNiP > FeCoNiS > FeCoNiO. These results indicate that FeCoNiP is an excellent polysulfide immobilizer and catalyst that restricts shuttling and improves reaction kinetics. Electrochemical tests further demonstrated that the FeCoNiP cathode delivered superior cycling performance to FeCoNiO or FeCoNiS. In addition, the battery performance order is consistent with that of catalytic ability, which suggests that catalytic ability plays a key influencing role in batteries. This study provides new insight into the use of O-, S-, and P-doped TMCs as functional sulfur carriers.