Issue 29, 2024

Cyclic ether and anhydride ring opening copolymerisation delivering new ABB sequences in poly(ester-alt-ethers)

Abstract

Poly(ester-alt-ethers) are interesting as they combine the ester linkage rigidity and potential for hydrolysis with ether linkage flexibility. This work describes a generally applicable route to their synthesis applying commercial monomers and yielding poly(ester-alt-ethers) with variable compositions and structures. The ring-opening copolymerisation of anhydrides (A), epoxides (B) and cyclic ethers (C), using a Zr(IV) catalyst, produces either ABB or ABC type poly(ester-alt-ethers). The catalysis is effective using a range of commercial anhydrides (A), including those featuring aromatic, unsaturated or tricyclic monomers, and with different alkylene oxides (epoxides, B), including those featuring aliphatic, alkene or ether substituents. The range of effective cyclic ethers (C) includes tetrahydrofuran, 2,5-dihydrofuran (DHF) or 1,4-bicyclic ether (OBH). In these investigations, the catalyst:anhydride loadings are generally held constant and deliver copolymers with degrees of copolymerisation of 25, with molar mass values from 4 to 11 kg mol−1 and mostly with narrow dispersity molar mass distributions. All the new copolymers are amorphous, they show the onset of thermal decomposition between 270 and 344 °C and variable glass transition temperatures (−50 to 48 °C), depending on their compositions. Several of the new poly(ester-alt-ethers) feature alkene substituents which are reacted with mercaptoethanol, by thiol–ene processes, to install hydroxyl substituents along the copolymer chain. This strategy affords poly(ether-alt-esters) featuring 30, 70 and 100% hydroxyl substituents (defined as % of monomer repeat units featuring a hydroxyl group) which moderate physical properties such as hydrophilicity, as quantified by water contact angles. Overall, the new sequence selective copolymerisation catalysis is shown to be generally applicable to a range of anhydrides, epoxides and cyclic ethers to produce new families of poly(ester-alt-ethers). In future these copolymers should be explored for applications in liquid formulations, electrolytes, surfactants, plasticizers and as components in adhesives, coatings, elastomers and foams.

Graphical abstract: Cyclic ether and anhydride ring opening copolymerisation delivering new ABB sequences in poly(ester-alt-ethers)

Supplementary files

Article information

Article type
Edge Article
Submitted
27 Mar 2024
Accepted
11 Jun 2024
First published
27 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024,15, 11617-11625

Cyclic ether and anhydride ring opening copolymerisation delivering new ABB sequences in poly(ester-alt-ethers)

R. W. F. Kerr, A. R. Craze and C. K. Williams, Chem. Sci., 2024, 15, 11617 DOI: 10.1039/D4SC02051K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements