Issue 28, 2024

Pathway-dependent supramolecular polymerization by planarity breaking

Abstract

In controlled supramolecular polymerization, planar π-conjugated scaffolds are commonly used to predictably regulate stacking interactions, with various assembly pathways arising from competing interactions involving side groups. However, the extent to which the nature of the chromophore itself (planar vs. non-planar) affects pathway complexity requires clarification. To address this question, we herein designed a new BOPHY dye 2, where two oppositely oriented BF2 groups induce a disruption of planarity, and compared its supramolecular polymerization in non-polar media with that of a previously reported planar BODIPY 1 bearing identical substituents. The slightly non-planar structure of the BOPHY dye 2, as evident in previously reported X-ray structures, together with the additional out-of-plane BF2 group, allow for more diverse stacking possibilities leading to two fiber-like assemblies (kinetic 2A and thermodynamic 2B), in contrast to the single assembly previously observed for BODIPY 1. The impact of the less rigid, preorganized BOPHY core compared to the planar BODIPY counterpart is also reflected in the stronger tendency of the former to form anisotropic assemblies as a result of more favorable hydrogen bonding arrays. The structural versatility of the BOPHY core ultimately enables two stable packing arrangements: a kinetically controlled antiparallel face-to-face stacking (2A), and a thermodynamically controlled parallel slipped packing (2B) stabilized by (BF2) F⋯H (meso) interactions. Our findings underscore the significance of planarity breaking and out-of-plane substituents on chromophores as design elements in controlled supramolecular polymerization.

Graphical abstract: Pathway-dependent supramolecular polymerization by planarity breaking

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
15 Apr 2024
Accepted
04 Jun 2024
First published
11 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024,15, 10745-10752

Pathway-dependent supramolecular polymerization by planarity breaking

R. M. Veedu, Z. Fernández, N. Bäumer, A. Albers and G. Fernández, Chem. Sci., 2024, 15, 10745 DOI: 10.1039/D4SC02499K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements