Issue 33, 2024

In vitro selection of N1-methyladenosine-sensitive RNA-cleaving deoxyribozymes with 105-fold selectivity over unmethylated RNA

Abstract

RNA-cleaving DNAzymes (RCDs) are catalytically active DNA molecules that cleave a wide range of RNA targets with extremely high sequence-selectivity, but none is able to faithfully discriminate methylated from unmethylated RNA (typically <30-fold). We report the first efforts to isolate RCDs from a random-sequence DNA pool by in vitro selection that cleave RNA/DNA chimera containing N1-methyladenosine (m1A), one of the most prevalent RNA modifications that plays important regulatory roles in gene expression and human cancers. A cis-acting deoxyribozyme, RCD1-S2m1A, exhibits an observed rate constant (kobs) of 5.3 × 10−2 min−1, resulting in up to 105-fold faster cleavage of the m1A-modified versus unmethylated RNA. Furthermore, a trans-acting fluorogenic deoxyribozyme was constructed by labeling a fluorophore and a quencher at the 5′ and 3′ ends of the chimeric substrate, respectively. It permits the synchronization of RNA-cleaving with real-time fluorescence signaling, thus allowing the selective monitoring of ALKBH3-mediated demethylation and inhibitor screening in living cells.

Graphical abstract: In vitro selection of N1-methyladenosine-sensitive RNA-cleaving deoxyribozymes with 105-fold selectivity over unmethylated RNA

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
04 May 2024
Accepted
23 Jul 2024
First published
24 Jul 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 13452-13458

In vitro selection of N1-methyladenosine-sensitive RNA-cleaving deoxyribozymes with 105-fold selectivity over unmethylated RNA

J. Shi, Q. Zhang, Y. Wu, Y. Chang and M. Liu, Chem. Sci., 2024, 15, 13452 DOI: 10.1039/D4SC02943G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements