Issue 42, 2024

Direct observation of β-alkynyl eliminations from unstrained propargylic alkoxide Cu(i) complexes by C–C bond cleavage

Abstract

β-Carbon eliminations of aryl, allylic, and propargylic alkoxides of Rh(I), Pd(II), and Cu(I) are key elementary reactions in the proposed mechanisms of homogeneously catalysed cross-coupling, group transfer, and annulation. Besides the handful of studies with isolable Rh(I)-alkoxides, β-carbon eliminations of Pd(II)- and Cu(I)-alkoxides are less definitive. Herein, we provide a comprehensive synthetic, structural, and mechanistic study on the β-alkynyl eliminations of isolable secondary and tertiary propargylic alkoxide Cu(I) complexes, LCuOC(H)(Ph)C[triple bond, length as m-dash]CPh and LCuOC(ArF)2C[triple bond, length as m-dash]CPh (L = N-heterocyclic carbene (NHC), dppf, S-BINAP), to produce monomeric (NHC)CuC[triple bond, length as m-dash]CPh, dimeric [(diphosphine)CuC[triple bond, length as m-dash]CPh]2, and the corresponding carbonyl. Selective β-alkynyl over β-hydrogen elimination was observed for NHC- and diphosphine-supported secondary propargylic alkoxide complexes. The mechanism for the first-order reaction of β-carbon elimination of (IPr*Me)CuOC(ArF)2C[triple bond, length as m-dash]CPh is proposed to occur through an organized four-centred transition state via a Cu-alkyne π complex based on Eyring analysis of variable-temperature reaction rates by UV-vis kinetic analysis to provide ΔH = 24(1) kcal mol−1, ΔS = −8(3) e.u., and ΔG (25 °C) = 27 kcal mol−1 over a temperature range of 60–100 °C. Additional quantitative UV-vis kinetic studies conclude that the electronic and steric properties of the NHC ligands engendered a marginal effect on the elimination rate, requiring 2–3 h at 100 °C for completion, whereas complete β-alkynyl eliminations of diphosphine-supported propargylic alkoxides were observed in 1–2 h at 25 °C.

Graphical abstract: Direct observation of β-alkynyl eliminations from unstrained propargylic alkoxide Cu(i) complexes by C–C bond cleavage

Supplementary files

Article information

Article type
Edge Article
Submitted
07 May 2024
Accepted
17 Sep 2024
First published
23 Sep 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 17481-17489

Direct observation of β-alkynyl eliminations from unstrained propargylic alkoxide Cu(I) complexes by C–C bond cleavage

B. L. Tran, J. T. Fuller, J. D. Erickson, B. Ginovska and S. Raugei, Chem. Sci., 2024, 15, 17481 DOI: 10.1039/D4SC02982H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements