Issue 44, 2024

New frontiers in alkali metal insertion into carbon electrodes for energy storage

Abstract

With rising interest in new electrodes for next-generation batteries, carbon materials remain as top competitors with their reliable performance, low-cost, low voltage reactions, and diverse tunability. Depending on carbon's structure, it can attain high cyclability as with Li+ at crystalline graphite or exceptional capacities with Na+ at amorphous, porous hard carbons. In this review, we discuss key results and research directions using carbon electrodes for alkali ion storage. We start the first section with hard carbon (HC), a leading material of interest for next-generation Na-ion batteries. Methods for tuning the HC structure towards a high capacity pore-filling mechanism are examined. The rate performance of hard carbon electrodes is further discussed. We finish this section with soft carbons that mostly remain as low performing materials compared to other carbons. In the second section, we discuss alkali ion insertion into graphite and graphite-like materials. Though graphite has a long history with Li-ion batteries, it also shows promising characteristics for K-ion batteries. We discuss the significant progress made on improving the electrolyte for high cyclability of graphite with K+. Thereafter, we evaluate B/C/N materials that have a similar structure to graphite but can attain higher capacities for both Li+ and Na+. Finally, we touch on the recent developments using alternative solvents for Na+ cointercalation at graphite and deeper knowledge on the intercalant structure. Despite steady progress, carbon electrodes continue to improve as a key group of materials for alkali energy storage.

Graphical abstract: New frontiers in alkali metal insertion into carbon electrodes for energy storage

Article information

Article type
Review Article
Submitted
16 May 2024
Accepted
14 Oct 2024
First published
17 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18272-18294

New frontiers in alkali metal insertion into carbon electrodes for energy storage

Z. T. Gossage, D. Igarashi, Y. Fujii, M. Kawaguchi, R. Tatara, K. Nakamoto and S. Komaba, Chem. Sci., 2024, 15, 18272 DOI: 10.1039/D4SC03203A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements