Issue 32, 2024

Efficient N2 electroreduction enabled by linear charge transfer over atomically dispersed W sites

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) presents a sustainable alternative to the Haber–Bosch process for ammonia (NH3) production. However, developing efficient catalysts for NRR and deeply elucidating their catalytic mechanism remain daunting challenges. Herein, we pioneered the successful embedding of atomically dispersed (single/dual) W atoms into V2−xCTyvia a self-capture method, and subsequently uncovered a quantifiable relationship between charge transfer and NRR performance. The prepared n-W/V2−xCTy shows an exceptional NH3 yield of 121.8 μg h−1 mg−1 and a high faradaic efficiency (FE) of 34.2% at −0.1 V (versus reversible hydrogen electrode (RHE)), creating a new record at this potential. Density functional theory (DFT) computations reveal that neighboring W atoms synergistically collaborate to significantly lower the energy barrier, achieving a remarkable limiting potential (UL) of 0.32 V. Notably, the calculated UL values for the constructed model show a well-defined linear relationship with integrated-crystal orbital Hamilton population (ICOHP) (y = 0.0934x + 1.0007, R2 = 0.9889), providing a feasible activity descriptor. Furthermore, electronic property calculations suggest that the NRR activity is rooted in d–2π* coupling, which can be explained by the “donation and back-donation” hypothesis. This work not only designs efficient atomic catalysts for NRR, but also sheds new insights into the role of neighboring single atoms in improving reaction kinetics.

Graphical abstract: Efficient N2 electroreduction enabled by linear charge transfer over atomically dispersed W sites

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Jun 2024
Accepted
08 Jul 2024
First published
09 Jul 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 12796-12805

Efficient N2 electroreduction enabled by linear charge transfer over atomically dispersed W sites

J. Wan, D. Liu, C. Feng, H. Zhang and Y. Wang, Chem. Sci., 2024, 15, 12796 DOI: 10.1039/D4SC03612C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements