Slightly Li-enriched chemistry enabling super stable LiNi0.5Mn0.5O2 cathodes under extreme conditions†
Abstract
High voltage/high temperature operation aggravates the risk of capacity attenuation and thermal runaway of layered oxide cathodes due to crystal degradation and interfacial instability. A combined strategy of bulk regulation and surface chemistry design is crucial to handle these issues. Here, we present a simultaneous Li2WO4-coated and gradient W-doped 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode through modulating the content of the exotic dopant and stoichiometric lithium salt during lithiation calcination. Benefiting from the slightly Li-enriched chemistry induced by the hetero-epitaxially grown Li2WO4 surface, the 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode demonstrates superior electrochemical performance to W-doped LiNi0.49Mn0.49W0.02O2 and WO3 coated 0.98LiNi0.5Mn0.5O2·0.02WO3 cathodes without a Li-enriched phase. Specifically, when cycled in the potential range of 2.7–4.5 V at 30 °C, the 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode possesses a high discharge capacity of 199.2 and 156.5 mA h g−1 at 0.1 and 5C and a capacity retention of 92.88% after 300 cycles at 1C. Even at a high cut-off voltage of 4.6 V, it still retains a capacity retention of 91.15% after 200 cycles at 1C and 30 °C. Compared with LiNi0.5Mn0.5O2, the enhanced performance of 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 can be attributed to its robust bulk and stable interface, inhibited lattice oxygen release, and improved Li+ transport kinetics. Our work emphasizes the significance of the slightly Li-enriched chemistry and bulk modulation strategy in stabilizing cathodes and hence unlocks vast possibilities for future cathode design.