Issue 35, 2024

Slightly Li-enriched chemistry enabling super stable LiNi0.5Mn0.5O2 cathodes under extreme conditions

Abstract

High voltage/high temperature operation aggravates the risk of capacity attenuation and thermal runaway of layered oxide cathodes due to crystal degradation and interfacial instability. A combined strategy of bulk regulation and surface chemistry design is crucial to handle these issues. Here, we present a simultaneous Li2WO4-coated and gradient W-doped 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode through modulating the content of the exotic dopant and stoichiometric lithium salt during lithiation calcination. Benefiting from the slightly Li-enriched chemistry induced by the hetero-epitaxially grown Li2WO4 surface, the 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode demonstrates superior electrochemical performance to W-doped LiNi0.49Mn0.49W0.02O2 and WO3 coated 0.98LiNi0.5Mn0.5O2·0.02WO3 cathodes without a Li-enriched phase. Specifically, when cycled in the potential range of 2.7–4.5 V at 30 °C, the 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 cathode possesses a high discharge capacity of 199.2 and 156.5 mA h g−1 at 0.1 and 5C and a capacity retention of 92.88% after 300 cycles at 1C. Even at a high cut-off voltage of 4.6 V, it still retains a capacity retention of 91.15% after 200 cycles at 1C and 30 °C. Compared with LiNi0.5Mn0.5O2, the enhanced performance of 0.98LiNi0.5Mn0.5O2·0.02Li2WO4 can be attributed to its robust bulk and stable interface, inhibited lattice oxygen release, and improved Li+ transport kinetics. Our work emphasizes the significance of the slightly Li-enriched chemistry and bulk modulation strategy in stabilizing cathodes and hence unlocks vast possibilities for future cathode design.

Graphical abstract: Slightly Li-enriched chemistry enabling super stable LiNi0.5Mn0.5O2 cathodes under extreme conditions

Supplementary files

Article information

Article type
Edge Article
Submitted
10 Jun 2024
Accepted
08 Aug 2024
First published
09 Aug 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 14415-14424

Slightly Li-enriched chemistry enabling super stable LiNi0.5Mn0.5O2 cathodes under extreme conditions

S. Chen, P. Zhang, X. Zhou, W. Wu, X. Liu, Y. Liu, G. Feng, B. Zhang, W. Xing, M. Zuo, P. Zhang, G. Lv, Y. Xiao, S. Dou and W. Xiang, Chem. Sci., 2024, 15, 14415 DOI: 10.1039/D4SC03805C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements