Charting the coordinative landscape of the 18F–Sc/44Sc/177Lu triad with the tri-aza-cyclononane (tacn) scaffold†
Abstract
The widely established PET isotope 18F does not have a therapeutic partner. We have recently established that the Sc–F bond can be formed under aqueous, high yielding conditions, paving the way to providing 18F as diagnostic partners to 47Sc and 177Lu radiotherapeutics. Here, we synthesized a library of tacn-based chelators comprised of 10 structurally unique permutations incorporating acetate, methyl-benzylamide and picolinate donor arms. The chelator library encompasses chelators ranging from 6- to 9-dentate, and produces complex changes ranging from +3 to −1. The corresponding Sc–F/Sc and Lu chelate complexes were characterized using computational, spectroscopic and potentiometric methods, followed by optimization of radiolabeling with 18F, 44Sc and 177Lu and concluded by in vivo validation. We identify characterization benchmarks that chart the coordinative landscape of radiochelation approaches for this unusual triad. Our screening identifies two ligand systems, H2L111 and H3L201 as ideal, readily functionalizable constructs for prospective, targeted theranostic applications with 18F/44Sc/177Lu.