Smart membranes for separation and sensing
Abstract
Self-assembled membranes are extensively applied across various fields due to their non-thermal and low-carbon footprint characteristics. Recently, smart membranes with stimuli responsiveness have garnered significant attention for their ability to alter physical and chemical properties in response to different stimuli, leading to enhanced performance and a wider range of applications compared to traditional membranes. This review highlights the recent advancements in self-assembled smart membranes, beginning with widely used membrane preparation strategies such as interfacial polymerization and blending. Then it delves into the primary types of stimuli-responses, including light, pH, and temperature, illustrated in detail with relevant examples. Additionally, the review explores the latest progress in the use of smart membranes for separation and sensing, addressing the challenges and opportunities in both fields. This review offers new insights into the design of novel smart membrane platforms for sustainable development and provides a broader perspective on their commercial potential.
- This article is part of the themed collection: 2024 Chemical Science Perspective & Review Collection