Issue 44, 2024

A three-dimensional lead iodide perovskite analog featuring hydrogen-bonded dual monovalent cations

Abstract

Three-dimensional (3D) halide perovskites have attracted considerable research interest, yet the selection of A-site cations is restricted by the Goldschmidt tolerance factor. To accommodate cations beyond this acceptable range, novel 3D perovskite analog structures with edge- and face-sharing motifs have been developed. Until now, these structures have been limited to divalent cations due to significant electrostatic repulsion when incorporating two monovalent cations. Herein, we employ a supramolecular synthon mechanism to address the issue and an effective hydrogen-bonding pattern is achieved in a novel 3D lead iodide hybrid perovskite, (ammonium)(morpholinium)Pb2I6 (1). The inorganic framework of 1 consists of two edge-shared [PbI6] octahedra connected via corner-sharing, thus forming a continuous 3D network. Structural analysis indicates that the spatial separation of N atoms and the existence of N–H⋯O hydrogen bonds effectively eliminate electrostatic repulsion. This work has demonstrated the potential to mitigate constraints of cation selection on 3D frameworks and could spur the development of novel 3D perovskite materials and related fields.

Graphical abstract: A three-dimensional lead iodide perovskite analog featuring hydrogen-bonded dual monovalent cations

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Aug 2024
Accepted
11 Oct 2024
First published
11 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18455-18462

A three-dimensional lead iodide perovskite analog featuring hydrogen-bonded dual monovalent cations

W. Wang, C. Liu, C. Fan and W. Zhang, Chem. Sci., 2024, 15, 18455 DOI: 10.1039/D4SC05585C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements