Issue 46, 2024

Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis

Abstract

Xanthone-based polyketides with complex molecular frameworks and potent bioactivities distribute and function in different biological kingdoms, yet their biosynthesis remains under-investigated. In particular, nothing is known regarding how to switch between the C4a–C10 (C4a-selective) and C10a–C10 bond (C10a-selective) cleavages of anthraquinone intermediates involved in biosynthesizing strikingly different frameworks of xanthones and their siblings. Enabled by our characterization of antiosteoporotic brunneoxanthones, a subfamily of polyketides from Aspergillus brunneoviolaceus FB-2, we present herein the brunneoxanthone biosynthetic gene cluster and the C10a-selective cleavage of anthraquinone (chrysophanol) hydroquinone leading ultimately to the bioactive brunneoxanthones under the catalysis of BruN (an undescribed atypical non-heme iron dioxygenase) in collaboration with BruM as a new oxidoreductase that reduces the anthraquinone into its hydroquinone using NADPH as a cofactor. The insights into the driving force that determines whether the C10a- or C4a-selective cleavages of anthraquinone hydroquinones take place were achieved by a combination of multiprotein sequence alignment, directed protein evolution, theoretical simulation, chemical capture of hydroquinone tautomer, 18O chasing, and X-ray crystal structure of the BruNN441M mutant, eventually allowing for the protocol establishment for the on-demand switch between the two ways of anthraquinone openings. Collectively, the work paves the way for the synthetic biology-based regeneration of uniquely structured high-value xanthones present in low abundance in complex mixtures, and helps to deepen the understanding on why and how such xanthones and their congeners are biosynthesized by different (micro)organisms in nature.

Graphical abstract: Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Sep 2024
Accepted
04 Nov 2024
First published
05 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 19534-19545

Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis

X. J. Lv, C. Z. Ai, L. R. Zhang, X. X. Ma, J. J. Zhang, J. P. Zhu and R. X. Tan, Chem. Sci., 2024, 15, 19534 DOI: 10.1039/D4SC06369D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements