Issue 46, 2024

Merging nucleophilic phosphine catalysis and photocatalysis for the rapid assembly of 2-oxabicyclo-[2.1.1]hexane scaffolds from feedstock allyl alcohols

Abstract

The previously unreported combination of nucleophilic phosphine catalysis and energy transfer catalysis allows for the rapid construction of structurally distinct 2-oxabicyclo[2.1.1]hexanes (2-oxa-BCH) from readily available building blocks with high atom economy. Previous multistep routes to these important phenyl ring bioisosteres have largely depended on the use of bespoke strain-release agents or on multiple post-functionalisation reactions to access structural diversity of the scaffold. In contrast, this cascade reaction allows the medicinal chemist to exploit the breadth of commercial allyl alcohols to synthesise systematically diverse 2-oxa-BCH architectures. Using a combination of polar and radical disconnections in the same reaction flask, every position of the scaffold can be substituted with useful functional handles such as protected amines, esters and alcohols, as well as arenes and alkyl groups. Cyclic allyl alcohols can even be employed to yield single diastereomers of sp3-rich bridged spirocyclic structures. Aromatic groups at the 1-position can be varied to incorporate a plethora of arenes including medicinally relevant heterocycles such as indole, pyrazole and pyridine.

Graphical abstract: Merging nucleophilic phosphine catalysis and photocatalysis for the rapid assembly of 2-oxabicyclo-[2.1.1]hexane scaffolds from feedstock allyl alcohols

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Oct 2024
Accepted
31 Oct 2024
First published
04 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024,15, 19564-19570

Merging nucleophilic phosphine catalysis and photocatalysis for the rapid assembly of 2-oxabicyclo-[2.1.1]hexane scaffolds from feedstock allyl alcohols

D. M. Whalley, L. Carlino, O. D. Putra, N. A. Anderson, S. C. Coote and O. Lorthioir, Chem. Sci., 2024, 15, 19564 DOI: 10.1039/D4SC06684G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements