Issue 17, 2024

Conductive carbon fabric generation from single-step upcycling of textile waste

Abstract

Environmental impacts from the fashion industry are at the top of global pollution. Fiber production, fabric preparation and distribution, and disposal of textiles combined with the excessive consumerism of clothing result in the wastage of thousands of million cubic meters of fresh water, the release of gigatons of CO2 equivalent, and tens of millions of metric tons of textile waste generation every year. This situation shows that there is an urgent and mandatory need to change the fashion paradigm, but, even if accomplished, the current textile waste spread worldwide still needs to be managed in an environmentally conscious way. Upcycling textile waste by pyrolysis is gaining interest as an alternative management option. The goal is to endow waste with new functionalities for its repurposing into new applications. This study focuses on applying pyrolysis to convert discarded clothing into a conductive carbon textile while avoiding treatments with hazardous chemicals. Envisioned to be applied for current collection in all-organic primary power sources, the ultimate goal is to replace synthetic polymers in commercial carbon current collectors. Actual textile waste has been successfully pyrolyzed without the need for pre-treatments or activation. The structural composition of the samples was studied by SEM, X-ray diffraction, Raman spectroscopy, ATR-FTIR spectroscopy, EDS and BET surface area. Electrical and electrochemical characterization showed their suitability as current collectors, which was demonstrated by building an aqueous metal-free organic primary battery. A system of innocuous quinone-based redox chemistry coupled with the revalorized collectors delivered 11.17 mA cm−2 and 1.4 mW cm−2 of power density, proving the feasibility of the proposed application.

Graphical abstract: Conductive carbon fabric generation from single-step upcycling of textile waste

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2023
Accepted
01 Jul 2024
First published
02 Jul 2024

Sustainable Energy Fuels, 2024,8, 3844-3853

Conductive carbon fabric generation from single-step upcycling of textile waste

C. Tortosa, M. Navarro-Segarra, P. Guerrero, K. de la Caba and J. P. Esquivel, Sustainable Energy Fuels, 2024, 8, 3844 DOI: 10.1039/D3SE01722B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements