Issue 9, 2024

Lignocellulosic biomass-based materials: a promising resource for viable energy storage

Abstract

The focus and driving force behind the advancement of energy storage devices is the demand for the development of electrochemical energy storage systems using abundant, renewable, eco-friendly, and cost-effective materials. Lignocellulosic-based materials are attracting considerable attention in the energy storage industry because of their potential to serve as high-performance electrodes, electrolytes, separators, and binders for supercapacitors and batteries. The use of lignocellulose-based materials in devices presents numerous benefits, such as sustainability, biodegradability, environmental friendliness, and cost-effectiveness. The use of lignocellulosic biomass for the manufacture of materials for energy storage devices has been shown to improve their performance. The materials exhibit chemical, mechanical, and structural features that are suitable for meeting the demands of energy storage devices. The devices demonstrate enhanced capacities, greater energy and power densities, extended lifecycles, and enhanced safety. Lignocellulosic-based materials have shown great promise as electrodes, electrolytes, separators, and binders, working very well in all of these roles. The purpose of this critical review is to analyse the recent advancements in the field of lignocellulosic-based materials and their application in supercapacitors and batteries. The paper includes a brief examination of the several theoretical models used to describe lignocellulose-based materials. Lastly, this paper also includes an analysis of future prospects and the challenges that may arise.

Graphical abstract: Lignocellulosic biomass-based materials: a promising resource for viable energy storage

Article information

Article type
Review Article
Submitted
10 Jan 2024
Accepted
17 Mar 2024
First published
21 Mar 2024

Sustainable Energy Fuels, 2024,8, 1823-1871

Lignocellulosic biomass-based materials: a promising resource for viable energy storage

Md. M. Islam, Sustainable Energy Fuels, 2024, 8, 1823 DOI: 10.1039/D4SE00038B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements