Issue 22, 2024

Choosing a liquid hydrogen carrier for sustainable transportation

Abstract

Liquid hydrogen carriers (LHCs) are important shuttles for molecular hydrogen (H2) as they are convenient to transport as energy-dense liquids over distances greater than 10 000 km. Herein, we provide comprehensive insights into the comparative practicality and safety of irreversible LHCs. From a gas purification standpoint, fewer products in the released H2 stream result in less separation complexity and lower cost. Unit operational complexities of methanol (MeOH) steam reforming versus fossil steam-methane reforming were analyzed in depth to highlight gas-cleaning complexities. The main challenge is to estimate the costs of LHC reforming, cleaning and compression (RC&C) steps for H2 production in order to break even with other energy scenarios. To achieve this, two techno-economic analyses (TEA) were performed from the ‘vehicle’ and ‘fuel’ points of view. ‘Vehicle’ analysis compares the use of MeOH-to-H2 for proton-exchange membrane fuel-cell vehicles (FCVs) with the use of MeOH directly as drop-in fuel for conventional vehicles (ICEVs). ‘Fuel’ analysis compares renewable MeOH and dimethyl ether LHC transport with pressurized and cryogenic H2 transport for FCVs. For the analyses in which H2 gas is produced as a fuel, RC&C steps are assumed to be accomplished off-board or before fueling the vehicles. ‘Vehicle’ analysis findings indicate that with a moderate tax on carbon emissions, in the year 2035 and beyond, FCVs can be competitive with ICEVs with an RC&C cost of ∼US $ 2–6 per kg H2. From the ‘fuel’ analysis perspective, LHCs break-even with gaseous and liquid H2 transport at a more flexible RC&C cost of US $ 7.9–11.4 per kg H2.

Graphical abstract: Choosing a liquid hydrogen carrier for sustainable transportation

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2024
Accepted
02 Sep 2024
First published
20 Sep 2024

Sustainable Energy Fuels, 2024,8, 5181-5194

Choosing a liquid hydrogen carrier for sustainable transportation

A. A. Tountas, G. A. Ozin and M. M. Sain, Sustainable Energy Fuels, 2024, 8, 5181 DOI: 10.1039/D4SE00731J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements