Issue 22, 2024

Polarity assessment of hydroxide mediated P(VDF-TrFE) composites for piezoelectric energy harvesting and self-powered mechanosensing

Abstract

Poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) commonly exhibits a very high degree of polarity in pristine condition. Still, highly piezoelectric inorganic fillers are incorporated into P(VDF-TrFE) to improve its piezoelectric energy harvesting performance and dielectric polarization. Here we incorporate a non-piezoelectric hydroxide filler, namely ZnSn(OH)6 (ZS), into P(VDF-TrFE) and study the effect of this filler on the polarity and piezoelectricity of the resulting composite systems. The amount of polar phase of pristine P(VDF-TrFE) was observed to be as high as ∼88.5% which slightly increased to ∼91% for 1 wt% ZS loaded P(VDF-TrFE) and then abruptly decreased for higher amounts of filler loading. For the 10 wt% ZS loaded P(VDF-TrFE) the polar phase decreased to ∼56%. This result has been explained here on the basis of hydrogen bonding interaction which has been intentionally facilitated here through the use of a ZnSn(OH)6 filler that contains a large number of –OH groups available for said interaction. The piezoelectricity of the composite films, as observed from PFM (Piezoresponse Force Microscopy) investigation, also showed a similar trend of variation of the piezoelectric properties of the composite films as compared to their polar phase. Owing to its high piezoelectricity, the 1 wt% ZS loaded P(VDF-TrFE) film was further used here for mechanical energy harvesting and different kinds of mechanosensing applications. The piezoelectric nanogenerator made up of this film delivered a high output power density (∼50 μW cm−2) with ∼83.5% efficiency.

Graphical abstract: Polarity assessment of hydroxide mediated P(VDF-TrFE) composites for piezoelectric energy harvesting and self-powered mechanosensing

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2024
Accepted
02 Oct 2024
First published
02 Oct 2024

Sustainable Energy Fuels, 2024,8, 5225-5240

Polarity assessment of hydroxide mediated P(VDF-TrFE) composites for piezoelectric energy harvesting and self-powered mechanosensing

A. Sasmal, P. Maiti, A. Arockiarajan and S. Sen, Sustainable Energy Fuels, 2024, 8, 5225 DOI: 10.1039/D4SE01118J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements