Issue 5, 2024

Residual cells and nutrient availability guide wound healing in bacterial biofilms

Abstract

Biofilms are multicellular heterogeneous bacterial communities characterized by social-like division of labor, and remarkable robustness with respect to external stresses. Increasingly often an analogy between biofilms and arguably more complex eukaryotic tissues is being drawn. One illustrative example of where this analogy can be practically useful is the process of wound healing. While it has been extensively studied in eukaryotic tissues, the mechanism of wound healing in biofilms is virtually unexplored. Combining experiments in Bacillus subtilis bacteria, a model organism for biofilm formation, and a lattice-based theoretical model of biofilm growth, we studied how biofilms recover after macroscopic damage. We suggest that nutrient gradients and the abundance of proliferating cells are key factors augmenting wound closure. Accordingly, in the model, cell quiescence, nutrient fluxes, and biomass represented by cells and self-secreted extracellular matrix are necessary to qualitatively recapitulate the experimental results for damage repair. One of the surprising experimental findings is that residual cells, persisting in a damaged area after removal of a part of the biofilm, prominently affect the healing process. Taken together, our results outline the important roles of nutrient gradients and residual cells on biomass regrowth on macroscopic scales of the whole biofilm. The proposed combined experiment–simulation framework opens the way to further investigate the possible relation between wound healing, cell signaling and cell phenotype alternation in the local microenvironment of the wound.

Graphical abstract: Residual cells and nutrient availability guide wound healing in bacterial biofilms

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2023
Accepted
13 Dec 2023
First published
22 Dec 2023
This article is Open Access
Creative Commons BY license

Soft Matter, 2024,20, 1047-1060

Residual cells and nutrient availability guide wound healing in bacterial biofilms

Y. Ye, M. Ghrayeb, S. Miercke, S. Arif, S. Müller, T. Mascher, L. Chai and V. Zaburdaev, Soft Matter, 2024, 20, 1047 DOI: 10.1039/D3SM01032E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements