Issue 6, 2024

Cationic and amphiphilic peptide-based hydrogels with dual activities as anticancer and antibacterial agents

Abstract

The emergence of peptide-based functional biomaterials is on the rise. To fulfil this purpose, a series of amphiphilic peptides, such as H2N-X-Met-Phe-C12H25, where X = L-lysine (CP1), X = L-histidine (CP2), and X = L-leucine (CP3), have been designed, synthesised, purified and fully characterised. Herein, we reported peptide-based supramolecular hydrogels with antibacterial and anticancer activities. An attempt has been made to investigate the antibacterial properties of these peptide-based hydrogels against Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. Investigations show that the L-lysine containing gelator, CP1, is active against both Gram-positive and Gram-negative bacteria and the L-histidine containing gelator, CP2, selectively inhibits the growth of Gram-negative bacteria. Interestingly, the L-leucine containing gelator, CP3, does not show any antibacterial properties. Moreover, the L-lysine containing gelator exhibits the best potency. Generation of reactive oxygen species (ROS) is a probable way to damage the bacterial membrane. To explore the cytotoxic properties and to determine the efficacy of the synthesized compounds in inhibiting cell viability, a comprehensive investigation was performed using three distinct cell lines: MDA-MB-231 (human triple-negative breast cancer), MDA-MB-468 (human triple-negative breast cancer) and HEK 293 (human embryonic kidney). Remarkably, the results of our study revealed a substantial cytotoxic impact of these peptide gelators on the MDA-MB-231 and MDA-MB-468 cell lines in comparison to the HEK 293 cells. Caspase 3/7 activity is the possible mechanistic path to determine the apoptotic rates of the cell lines. This finding emphasizes the promising potential of these peptide-based gelators in targeting and suppressing the growth of human triple negative breast cancer cells, while showing non-cytotoxicity towards non-cancerous HEK 293 cells. In a nutshell, these peptide-based materials are coming to light as next generation biomaterials.

Graphical abstract: Cationic and amphiphilic peptide-based hydrogels with dual activities as anticancer and antibacterial agents

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2023
Accepted
25 Dec 2023
First published
26 Dec 2023

Soft Matter, 2024,20, 1236-1244

Cationic and amphiphilic peptide-based hydrogels with dual activities as anticancer and antibacterial agents

T. Mondal, A. Chatterjee, B. Hansda, B. Mondal, P. Sen and A. Banerjee, Soft Matter, 2024, 20, 1236 DOI: 10.1039/D3SM01291C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements