Issue 5, 2024

Encapsulation of multiple enzymes within a microgel via water-in-water emulsions for enzymatic cascade reactions

Abstract

Enzyme-loaded spherical microgels with diameters of several micrometers have been explored for use in therapeutic microreactors and biosensors. Conventional preparation strategies for enzyme-loaded microgels utilized water-in-oil emulsions or flow chemistry techniques. The former damage enzyme activity using organic solvents and the latter are expensive and difficult to expand because of the complex system. In this study, we present a simple strategy for creating multiple enzyme-loaded gelatin-based microgels with tunable diameters in a single flask. This strategy was based on our finding that enzymes spontaneously partitioned in a dispersed methacryloyl gelatin aqueous solution in a poly(vinylpyrrolidone) (WGelMA/WPVP) aqueous solution. The method achieved an encapsulation efficiency of over 70% even with four types of enzymes and retained their activity owing to the full aqueous system. Additionally, the encapsulated β-galactosidase activity was maintained for 24 hours at pH 6, although naked β-galactosidase lost approximately 60% of its activity, which was superior to that of previous enzyme-loaded gelatin gels. Moreover, this simple method enabled the production of 10 g-scale or more microgels in one batch. We also demonstrated that multiple enzyme-loaded gelatin microgels functioned as cascade microreactors for lactose and glucose sensing. This versatile strategy enables the production of enzyme-loaded microgels while maintaining the enzyme activity using very low technologies. This result contributes to the easy preparation of enzyme-loaded microgels and their applications in the biomedical and green catalytic fields.

Graphical abstract: Encapsulation of multiple enzymes within a microgel via water-in-water emulsions for enzymatic cascade reactions

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2023
Accepted
21 Dec 2023
First published
22 Dec 2023

Soft Matter, 2024,20, 1018-1024

Encapsulation of multiple enzymes within a microgel via water-in-water emulsions for enzymatic cascade reactions

Y. Okuno and Y. Iwasaki, Soft Matter, 2024, 20, 1018 DOI: 10.1039/D3SM01309J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements