Issue 27, 2024

Responsive soft actuator: harnessing multi-vapor, light, and magnetic field stimuli

Abstract

Bioinspired soft actuators, capable of undergoing shape deformation in response to external triggers, hold great potential in fields such as soft robotics, artificial muscles, drug delivery, and smart switches. However, their widespread application is hindered by limitations in responsiveness, durability, and complex fabrication processes. In this study, we propose a new approach to tackle these challenges by developing a single-layer soft actuator that responds to multiple stimuli using a straightforward solution-casting method. This actuator comprises bio-polymer gelatin, bio-compatible PEDOT:PSS, and iron oxide (Fe3O4) nanoparticles. Our actuator exhibits responsiveness to a range of organic solvent vapors, including water vapor, light, and magnetic fields. Notably, it exhibits rapid and reversible bending in distinct directions in response to different vapors, bending upwards in the presence of water vapor and downwards in the presence of alcohol vapor. Moreover, exposure to infrared (IR) light induces a bending toward the light source. The incorporation of magnet-responsive Fe3O4 nanoparticles induces multi-functionality in the actuator. The actuation characteristics of the actuator are controlled by leveraging its responsiveness to dual stimuli, such as water vapor and magnetic fields, as well as light and magnetic fields. For the proof of concept, we showcase several potential applications of our multi-stimuli responsive soft actuator, including magnet-triggered electrical switches, cargo transportation, soft grippers, targeted drug delivery, energy harvesting, and bio-mimicry.

Graphical abstract: Responsive soft actuator: harnessing multi-vapor, light, and magnetic field stimuli

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2024
Accepted
22 Jun 2024
First published
24 Jun 2024

Soft Matter, 2024,20, 5435-5446

Responsive soft actuator: harnessing multi-vapor, light, and magnetic field stimuli

V. Kumar and D. K. Satapathy, Soft Matter, 2024, 20, 5435 DOI: 10.1039/D4SM00513A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements