Issue 36, 2024

Impact of water and oleic acid on glycerol monooleate phase transition and bi-continuous structure formation in white oil

Abstract

Production of biofuels from biological feedstocks, such as soybean oil, is an important piece of the transition to renewable energy sources. Processes have been developed to co-refine these feedstocks with traditional feedstocks, however, the high concentration of polar functional groups in biofeedstocks can cause a wide range of intermediate chemical reactions and interactions. An improved understanding of the interactions of biofeedstocks and their degradation products is needed to continue to expand the usage of biofeedstocks in fuel production. In this study, the equilibrium structures of glycerol monooleate (GMO), a common intermediate product of biofeedstock processing, in white mineral oil at a wide range of compositions, temperatures, and additional byproduct concentrations (water and/or oleic acid) were characterized using small angle X-ray scattering (SAXS). It was determined that GMO can exist as crystalline aggregates in white oil or as reverse micelles depending on the concentration and temperature. The critical micelle temperature increases significantly with increasing GMO concentration but remains relatively stable with increasing water or fatty acid concentration. Fitting of the SAXS data revealed that for many compositions, the GMO formed roughly spherical reverse micelles, however, at high water concentrations (∼1 wt%), the GMO formed elongated reverse micelles. Additionally, when >1 wt% oleic acid was added to the system, bi-continuous structures were stabilized rather than discreet reverse micelles. These results help increase our understanding of the structural behavior of biofeedstock intermediate products at concentrations and temperatures relevant to biofuel production and can enable processers to design systems and products that can either leverage or prevent these interactions for improved processing performance.

Graphical abstract: Impact of water and oleic acid on glycerol monooleate phase transition and bi-continuous structure formation in white oil

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2024
Accepted
28 Aug 2024
First published
30 Aug 2024

Soft Matter, 2024,20, 7237-7245

Impact of water and oleic acid on glycerol monooleate phase transition and bi-continuous structure formation in white oil

N. A. Nguyen, D. Y. Liu and D. V. Krogstad, Soft Matter, 2024, 20, 7237 DOI: 10.1039/D4SM00809J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements