Issue 48, 2024

Individual closed-loop control of micromotors by selective light actuation

Abstract

Control of individual micromotors within a group would allow for improved efficiency, greater ability to accomplish complex tasks, higher throughput, and increased adaptability. However, independent control of micromotors remains a significant challenge. Typical actuation techniques, such as chemical and magnetic, are uniform over the workspace and therefore cannot control one micromotor independently of the others. To address this challenge, we demonstrate a novel control method of applying a localized region of UV light that activates a single light-responsive TiO2 micromotor at a time. To achieve this, a digital micromirror device (DMD) was employed which is capable of highly precise localized illumination. To demonstrate this precise user-defined control, patterns of micromotors were created via selective actuation and magnetic steering. In addition, a closed-loop system was also developed which automates the guidance of individual micromotors to specified locations, illustrating the potential for more efficient and precise control of the micromotors.

Graphical abstract: Individual closed-loop control of micromotors by selective light actuation

Supplementary files

Article information

Article type
Communication
Submitted
03 Jul 2024
Accepted
04 Nov 2024
First published
11 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2024,20, 9523-9527

Individual closed-loop control of micromotors by selective light actuation

D. P. Rivas, M. Sokolich and S. Das, Soft Matter, 2024, 20, 9523 DOI: 10.1039/D4SM00810C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements