Issue 38, 2024

Traveling waves at the surface of active liquid crystals

Abstract

Active liquid crystals exert nonequilibrium stresses on their surroundings through constant consumption of energy, giving rise to dynamical steady states not present in equilibrium. The paradigmatic example of an active liquid crystal is a suspension of microtubule bundles powered by kinesin motor proteins, which exhibits self-sustained spatiotemporal chaotic flows. This system has been modelled using continuum theories that couple the microtubule orientation to active flows. Recently the focus has shifted to the interfacial properties of mixtures of active liquid crystals and passive fluids. Active/passive interfaces have been shown to support propagating capillary waves in the absence of inertia and offer a promising route for relating experimental parameters to those of the continuum theory. In this paper we report the derivation of a minimal model that captures the linear dynamics of the interface between an active liquid crystal and a passive fluid. We show that the dynamics of the interface, although powered by active flows throughout the bulk, is qualitatively captured by equations that couple non-reciprocally interface height and nematic director at the interface. This minimal model reproduces the dynamical structure factor evaluated from numerical simulations and the qualitative form of the wave dispersion relation seen in experiments.

Graphical abstract: Traveling waves at the surface of active liquid crystals

Article information

Article type
Paper
Submitted
05 Jul 2024
Accepted
09 Sep 2024
First published
10 Sep 2024

Soft Matter, 2024,20, 7703-7714

Traveling waves at the surface of active liquid crystals

P. Gulati, F. Caballero, I. Kolvin, Z. You and M. C. Marchetti, Soft Matter, 2024, 20, 7703 DOI: 10.1039/D4SM00822G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements