Issue 11, 2024

Sustainable micro-cellulosic additives for high-density fiber cement: emphasis on rheo-mechanical properties and cost–performance analysis

Abstract

To combat climate change (i.e., global warming), reducing the CO2 footprint of cement-based building materials can be substantiated by incorporating cellulosic fibers into the cement matrix (fiber cement). However, such materials design imposes tremendous technical challenges towards the fabrication process, interlinked to its rheo-mechanical properties. Thus, polycarboxylate-based (petrochemical-derived) rheology modifiers and silica-based (carcinogenic) additives are usually added to the fiber-cement slurry. Micro-cellulosic biomaterials are technically a viable eco-friendly alternative, capable of modifying the rheo-mechanical properties, yet to be explored for high-density (>8 wt% fiber) fiber cement. Herein, we have employed morphologically distinctive alpha-cellulose (AC) and microcrystalline cellulose (MCC) as rheo-mechanical additives. The total content of biomaterials in the fiber cement was up to 12 wt%, where the ratio between the micro-cellulosic additive (AC/MCC) and the cellulosic fibers varied proportionally. As a result, various composites were fabricated based on combinations 1 (AC and fibers) and 2 (MCC and fibers), and their rheo-mechanical properties were characterized to understand the effect of this morphologically distinctive micro-cellulose. Firstly, the rheological analysis revealed that combination 1 reduced the yield stress (improving the workability) at any content – with 4 wt% AC content indicating a maximum reduction in yield stress of 30%. Secondly, flexural strength analysis revealed that combinations 1 and 2 improve the modulus of rupture (MOR), and combination 2 (at 6 wt% MCC content) resulted in a 42% increase in MOR. Finally, we presented the cost-to-performance ratio analysis (economic perspective), highlighting the positive ramifications of this sustainable rheology modifier and additives for the cement-based composite – an avenue for low-embodied carbon building materials without compromising the strength-to-weight ratio.

Graphical abstract: Sustainable micro-cellulosic additives for high-density fiber cement: emphasis on rheo-mechanical properties and cost–performance analysis

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2024
Accepted
05 Sep 2024
First published
05 Sep 2024
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2024,2, 3362-3374

Sustainable micro-cellulosic additives for high-density fiber cement: emphasis on rheo-mechanical properties and cost–performance analysis

S. Raghunath, M. Hoque, B. Zakani, A. M. Gondaliya and E. J. Foster, RSC Sustain., 2024, 2, 3362 DOI: 10.1039/D4SU00287C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements