Harnessing a Ti-based MOF for selective adsorption and visible-light-driven water remediation†
Abstract
In pursuit of universal access to clean water, photocatalytic water remediation using metal–organic frameworks (MOFs) emerges as a strong alternative to the current wastewater treatment methods. In this study, we explore a unique Ti-based MOF comprised of 2D secondary-building units (SBUs) connected via biphenyl dicarboxylic acid (H2bpdc) ligands – denoted as COK-47 – as a visible-light-driven photocatalyst for organic dye degradation. Synthesized via a recently developed microwave-assisted method, COK-47 exhibits high hydrolytic stability, demonstrates a strong dye uptake, and shows noteworthy dye-degradation performance under UV, visible, and solar light, outperforming benchmark TiO2 and MIL-125-Ti photocatalysts. Due to its nanocrystalline structure and surface termination with organic linkers, COK-47 exhibits selective degradation of cationic pollutants while remaining inert towards anionic dyes, thus highlighting its potential for selective oxidation reactions. Mechanistic studies reveal the involvement of superoxide radicals in the degradation process and emphasize the need to minimize the recombination of photogenerated electron–hole pairs to achieve optimal performance. Post-catalytic studies further confirm the high stability and reusability of COK-47, making it a promising photocatalyst for water purification, organic transformation, and water splitting reactions under visible light.
- This article is part of the themed collection: Journal of Materials Chemistry A Emerging Investigators 2024