A super-tough plant oil based elastomer for UV-light assisted 3D printed soft robotics and shape-memory†
Abstract
Bio-based plant oil-derived elastomers are an attractive alternative to petroleum polymers due to a growing demand for flexible, high-strain materials in the 3D printable soft robotics field. So far, such solutions have been limited to slow and labor-demanding molding techniques, making them unable to achieve high design flexibility and exceptional resolution. Herein, we present a vat photopolymerization 3D printable and easily tailorable plant oil acrylate-based system with a bio-based carbon content ranging from 62% to 80%. By targeting the tuning of macromolecular design and post-processing conditions, a broad mechanical and functional contrast from soft and stretchable elastomers, with up to 180% elongation, to hard and ductile shape-memory polymers, is realized in 3D-printed parts. To further demonstrate the capability of the developed materials, we created a fully 3D-printed soft robotic actuator capable of fast and delicate movement. The proposed approach enables 3D printing of sustainable, high-resolution structures with targeted mechanical properties for application in various advanced fields.