Issue 45, 2024

Excellent low-field energy storage properties and high density achieved in Bi0.48Na0.48Ba0.04TiO3-based oxide ceramics via interposing (Na0.97Bi0.01)+/Ta5+ at A/B sites

Abstract

Lead-free dielectric ceramics are one of the most essential candidates for reforming pulsed power capacitors; nevertheless, formidable hurdles are posed by their high hysteresis and low energy storage properties. Dielectric ceramic capacitors with ultra-high energy storage performance usually need to be realized under the conditions of high electric field. Its application in miniaturized integrated electronic devices is severely limited. In this work, A-site deficiency was designed in Na0.97Bi0.01TaO3-modified Bi0.48Na0.48Ba0.04TiO3 lead-free relaxor ferroelectric ceramics to increase oxygen vacancy content, achieve local disorder and construct local multi-phase coexistence, which causes low hysteresis with excellent high energy density at low electric fields (LEFs). Results indicated that the introduction of A-site deficiency improved the concentration of oxygen vacancies while reconstructing the local structure disorder. Benefiting from the synergistic effect of both, a high energy recoverable density of ∼7.98 J cm−3 and efficiency η of ∼83.7% was determined in 0.84Bi0.48Na0.48Ba0.04TiO3-0.16Na0.97Bi0.01TaO3-modified ceramics under 330 kV cm−1. Furthermore, the modified ceramics had an acceptable frequency stability (0.5–130 Hz) and temperature stability (RT – 180 °C) with exact discharge density. These findings can lead to the development of an innovative strategy for fabricating energy-storage ceramics under low electric field conditions.

Graphical abstract: Excellent low-field energy storage properties and high density achieved in Bi0.48Na0.48Ba0.04TiO3-based oxide ceramics via interposing (Na0.97Bi0.01)+/Ta5+ at A/B sites

Article information

Article type
Paper
Submitted
07 Sep 2024
Accepted
12 Oct 2024
First published
14 Oct 2024

J. Mater. Chem. A, 2024,12, 31375-31385

Excellent low-field energy storage properties and high density achieved in Bi0.48Na0.48Ba0.04TiO3-based oxide ceramics via interposing (Na0.97Bi0.01)+/Ta5+ at A/B sites

J. Du, T. Shi, Q. Feng, R. Jia, J. Hu, C. Yuan, X. Wang, X. Chen, N. Luo and J. Zhai, J. Mater. Chem. A, 2024, 12, 31375 DOI: 10.1039/D4TA06319H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements