Issue 48, 2024

Water activity: the key to unlocking high-voltage aqueous electrolytes?

Abstract

Aqueous electrolytes offer enhanced safety and environmental friendliness for next-generation energy storage systems, but a narrow electrochemical stability window limits their application. This study provides a comprehensive analysis of the relationship between water activity and the electrochemical stability window of aqueous electrolytes, critically examining current expansion strategies. Our investigation reveals that stability window expansion is primarily driven by kinetic factors rather than thermodynamic ones. We demonstrate that decreasing water activity predominantly affects the oxygen evolution reaction, with minimal impact on hydrogen evolution. This asymmetric effect is quantified through Tafel analysis, showing a significant decrease in exchange current density with reduced water activity. Notably, this study is the first to establish a direct correlation between water activity and the electrochemical stability window for aqueous electrolytes, providing fundamental insights into how water activity influences electrode reaction kinetics and overall system stability. We critically evaluate existing approaches to reducing water activity, including high-concentration electrolytes, water-in-salt systems, and hydrophobic ions. While these methods widen the electrochemical window, they lead to decreased ionic conductivity and increased viscosity. In “water-in-salt” electrolytes, conductivity drops to levels comparable to organic electrolytes while viscosity increases exponentially. This work challenges the focus on maximizing stability windows at the expense of other crucial properties. We argue for a balanced approach in aqueous electrolyte design, considering factors such as ionic mobility, salt solubility, viscosity, operational temperature range, and electrochemical stability.

Graphical abstract: Water activity: the key to unlocking high-voltage aqueous electrolytes?

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Sep 2024
Accepted
11 Nov 2024
First published
12 Nov 2024

J. Mater. Chem. A, 2024,12, 33855-33869

Water activity: the key to unlocking high-voltage aqueous electrolytes?

Y. Zhigalenok, S. Abdimomyn, M. Levi, N. Shpigel, M. Ryabicheva, M. Lepikhin, A. Galeyeva and F. Malchik, J. Mater. Chem. A, 2024, 12, 33855 DOI: 10.1039/D4TA06655C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements