Silk–gelatin hybrid hydrogel: a potential carrier for RNA therapeutics
Abstract
RNA-based therapeutics have exhibited remarkable potential in targeting genetic factors for disease intervention, exemplified by recent mRNA vaccines for COVID-19. Nevertheless, the intrinsic instability of RNA and challenges related to its translational efficiency remain significant obstacles to the development of RNA as therapeutics. This study introduces an innovative RNA delivery approach using a silk fibroin (SF) and positively charged gelatin (Gel) hydrogel matrix to enhance RNA stability for controlled release. As a proof of concept, whole-cell RNA was incorporated into the hydrogel to enhance interactions with RNA molecules. Additionally, molecular modeling studies were conducted to explore the interactions between SF, collagen, chitosan (Chi), and the various RNA species including ribosomal RNAs (28S, 18S, 8.5S, and 5S rRNAs), transfer RNAs (tRNA-ALA, tRNA-GLN, and tRNA-Leu), as well as messenger RNAs (mRNA-GAPDH, mRNA-β actin, and mRNA-Nanog), shedding light on the RNA–polymer interaction and RNA stability; SF exhibits a more robust interaction with RNA compared to collagen/gel and chitosan. We confirmed the molecular interactions of SF and RNA by FTIR and Raman spectroscopy, which were further supported by AFM and contact angle measurement. This research introduces a novel RNA delivery platform and insights into biopolymer–RNA interactions, paving the way for tailored RNA delivery systems in therapeutics and biomedical applications.