Potentiating light-harvesting tactics through an A–D–A structure: repolarization of tumor-associated macrophages through phototherapy†
Abstract
Aiming to decrease the recurrence of tumors and achieve patient satisfaction, the elicitation of immunotherapy and its integrated synergistic employment is a bright new direction in oncotherapy, yet an emergently challenging task. In particular, tumor-associated macrophage (TAM) regulation though light-induced photodynamic and photothermal therapy (PDT and PTT) is regarded as a powerful approach, which focuses on the systemic immune system instead of the tumor itself. Herein, this study reports an acceptor–donor–acceptor (A–D–A) aggregation-induced emission luminogen (AIEgen), named TPA-2CN, which was applied as a photosensitizer (PS) and photothermal agent (PTA). Attributed to its A–D–A structure and AIE properties, TPA-2CN exhibits a high molar absorption coefficient and acts as a perfect template in regulating radiative and nonradiative transitions, which mainly utilize excited energy. The generation of type I reactive oxygen promoted its application in hypoxic tumor sites and the combination of hyperpyrexia forcefully induces macrophages to polarize towards the immune response M1 phenotype. In in vitro and in vivo, the successful reversion and reprogramming of the immune microenvironment was impressively proved. This method optimally concentrated immune therapy, PDT and PTT as one and exhibited excellent synergistic therapeutic effects with good biosafety.