A multi-modality imaging strategy to determine the multiple in vivo fates of human umbilical cord mesenchymal stem cells at different periods of acute liver injury treatment†
Abstract
Human umbilical cord mesenchymal stem cells (HUCMSCs) are applied for disease therapy as a new type of drug in many countries. Their effects are not only presented by live cells, but also apoptotic bodies or cell fragments of dead cells. Therefore, it is meaningful to determine the multiple fates of HUCMSCs in vivo. Although various probes combining different imaging modalities have been developed to label and trace transplanted HUCMSCs in vivo, the status of the cells (live, dead, or apoptotic) was not distinguished, and a thorough understanding of the multiple fates of HUCMSCs after transplantation in vivo is lacking. Therefore, a magnetic resonance (MR)/near infrared fluorescent (NIRF)/bioluminescence (BI) multi-modality imaging strategy was developed. Iron oxide nanoparticles (IONPs) were assembled into 100 nm nanoparticles using epigallocatechin gallate as a chemical linker to increase the MR signal and reduce the exocytosis of IONPs for direct cell labeling and longitudinal MR imaging tracking. Fluorescent probes for apoptosis (DEVD-Cy-OH) were also loaded in the above assemblies to monitor the cell status. Meanwhile, the cell surface was labeled with the fluorescent dye Cy7 via bioorthogonal reactions to visualize the NIRF signal. Luciferase was lentivirally transfected into live cells to generate bioluminescence. Such labeling did not affect either the viability, proliferation, migration, differentiation characteristics of HUCMSCs or their therapeutic effects on acute liver injury mice in vivo. The in vivo fates of HUCMSCs were monitored via MR/NIRF/BI multi-modality imaging in acute liver injury mice. Although MR and Cy7 signals aggregated in injured liver for 7 days, the BI signals persisted for less than 24 hours. There was an increase in DEVD-Cy-OH signals in the injured liver, but they were almost at the basal level. That means that HUCMSCs survive in mice for a short time, and the dead form of HUCMSCs accumulated in a large quantity and sustained for a long time, which might contribute to their therapeutic effect.