Issue 46, 2024

Delivery of Cu(ii) and Mn(ii) by polydopamine-modified nanoparticles for combined photothermal and chemotherapy

Abstract

Chemodynamic therapy (CDT) has been recognized as an emerging therapeutic strategy. It has attracted considerable attention in recent years as it can generate the most harmful reactive oxygen species (ROS)-hydroxyl radicals (•OH) through the Fenton reaction or a Fenton-like reaction under the catalysis of versatile metal cations, such as, Fe(II), Fe(III), Cu(I), Mn(II), and Mn(III). However, a large number of reducing species (e.g., GSH) in tumors inhibit the therapeutic effects of CDT. This study proposes a nanocarrier strategy that can release versatile metal cations in the initial stage to consume the reducing substances, which can be convenient for subsequent CDT treatment. A novel nano-delivery system based on H-MnO2@PDA/Cu-CD@Ad-TK-Ad@Ploy-CD (abbreviated as MNZ) was proposed to resolve the above problems. Herein, hollow mesoporous manganese dioxide nanoparticles (H-MnO2) were coated with PDA and modified with copper ions on the surface of PDA. The PDA was then functionalized with β-cyclodextrin (β-CD) substitutions that were further assembled with N-((1S,3R,5S)-adamantan-1-yl)-3-((2-((3-(((3s,5s,7s)-adamantan-1-yl)amino)-3-oxopropyl)thio)propan-2-yl)thio)propenamide (Ad-TK-Ad). Poly-CD was assembled with CD to improve the stability of the reactor. The MNZ nanotheranostic platform can release Cu(II) and Mn(II), which could react with intracellular GSH to consume the reducing substances in tumors. Subsequently, H2O2 can be converted into •OH, and the effect is improved with increasing temperatures. Cytotoxicity of MNZ (200 μg mL−1) was studied by cell counting kit-8 (CCK-8) assay using HeLa cells as the models. Results indicated that cell viability was clearly reduced to 22% by the nanoparticles alone, to 18% by the nanoparticles with H2O2, and to 9% by the nanoparticles with H2O2 and NIR, under weak acidic condition (pH 6.8). This work provides a beneficial exploration for the application of nano-delivery strategies for combined photothermal and chemodynamic therapy agents.

Graphical abstract: Delivery of Cu(ii) and Mn(ii) by polydopamine-modified nanoparticles for combined photothermal and chemotherapy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Aug 2024
Accepted
04 Oct 2024
First published
04 Oct 2024

J. Mater. Chem. B, 2024,12, 12062-12072

Delivery of Cu(II) and Mn(II) by polydopamine-modified nanoparticles for combined photothermal and chemotherapy

F. Lin, Y. Qin, J. Sun, Y. Liu, S. Yang, S. Zheng, L. Yin, D. Li, L. Cui, G. Li, Z. Qiu and Z. Liu, J. Mater. Chem. B, 2024, 12, 12062 DOI: 10.1039/D4TB01819B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements