Issue 31, 2024

Exploring the potential of lanthanide-doped oxyfluoride materials for bright green upconversion and their promising applications towards temperature sensing and drug delivery

Abstract

The most efficient upconversion (UC) materials reported to date are based on fluoride hosts with low phonon energies, which reduce the amount of nonradiative transitions. In particular, NaYF4 doped with Yb3+ and Er3+ at appropriate ratios is known as one of the most efficient UC phosphors. However, its low thermal stability limits its use for certain applications. On the other hand, oxide hosts exhibit better thermal stability, yet they have higher phonon energies and are thus prone to lower UC efficiencies. As a result, developing host nanomaterials that combine the robustness of oxides with the high upconversion efficiencies of fluorides remains an intriguing prospect. Herein, we demonstrate the formation of ytrrium doped oxyfluoride (YOF:Yb3+,Er3+) particles, which are prepared by growing a NaYF4:Yb3+,Er3+ layer around SiO2 spherical particles and consecutively applying a high-temperature annealing step followed by the removal of SiO2 template. Our interest lies in employing these materials as Boltzmann type physiological range luminescence thermometers, but their weak green emission is a drawback. To overcome this issue, and engineer materials suitable for Boltzmann type thermometry, we have studied the effect of introducing different metal ion co-dopants (Gd3+, Li+ or Mn2+) into the YOF:Yb3+,Er3+ particles, focusing on the overall emission intensity, as well as the green to red ratio, upon 975 nm laser excitation. These materials are explored for their use as ratiometric thermometers, and further also as drug carriers, including their simultaneous use for these two applications. The investigation also includes examining their level of toxicity towards specific human cells – normal human dermal fibroblasts (NHDFs) – to evaluate their potential use for biological applications.

Graphical abstract: Exploring the potential of lanthanide-doped oxyfluoride materials for bright green upconversion and their promising applications towards temperature sensing and drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2024
Accepted
26 Jun 2024
First published
29 Jun 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2024,12, 11785-11802

Exploring the potential of lanthanide-doped oxyfluoride materials for bright green upconversion and their promising applications towards temperature sensing and drug delivery

S. Mohanty, M. Lederer, S. Premcheska, H. Rijckaert, K. De Buysser, E. Bruneel, A. Skirtach, K. Van Hecke and A. M. Kaczmarek, J. Mater. Chem. C, 2024, 12, 11785 DOI: 10.1039/D4TC01740D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements