Perovskite single pixel imaging exceeding the visible towards X-ray and THz
Abstract
Images are traditionally interpreted through a series of spatial pixels, as exemplified by digital imaging chips that rely on silicon-based CCD and CMOS sensor technologies. However, because of the intrinsic material limitations of silicon, extending the imaging capabilities of higher signal-to-noise ratios under weak-light conditions, or to encompass gamma- and X-rays, and terahertz spectral regions presents significant challenges. Recently conceptual single-pixel imaging (SPI) represents a novel paradigm in image interpretation, offering a viable alternative that bypasses the intricate manufacturing requirements of multi-pixel arrays and enables the use of advanced, non-silicon materials. Halide perovskite emerges as a notable alternative, acclaimed for its superior photonic detection capabilities across a broad spectrum beyond the visible and its promising performance level higher than that of the state-of-the-arts. We propose that the perovskite-based SPI has the potential for cost-effective and multi-spectral imaging solutions to the existing techniques. This paper delves into the transformative impact of perovskite-based SPI, with discussions of its fundamentals, detailed imaging manifestations in different spectral regions, and its promising role in revolutionizing photonic imaging towards bidirectional extension far beyond the visible spectrum.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and Journal of Materials Chemistry C Emerging Investigators 2024