Expanding the horizons for viable precursors and liquid fluxes for the synthesis of BaZrS3 and related compounds†
Abstract
Chalcogenide perovskites represent a prominent class of emerging semiconductor materials for photovoltaic applications, boasting excellent optoelectronic properties, appropriate bandgaps, and remarkable stability. Among these, BaZrS3 is one of the most extensively studied chalcogenide perovskites. However, its synthesis typically demands high temperatures exceeding 900 °C. While recent advancements in solution-processing techniques have mitigated this challenge, they often rely on costly and difficult-to-find organometallic precursors. Furthermore, there is a notable gap in research regarding the influence of the Ba/Zr ratio on phase purity. Thus, our study explores solid-state reactions to investigate the impact of metal ratios and sulfur pressure on the phase purity of BaZrS3. Expanding upon this investigation, we aim to leverage cost-effective metal halide and metal sulfide precursors for the solution-based synthesis of BaMS3 (M = Ti, Zr, Hf) compounds. Additionally, we have devised a bilayer stacking approach to address the halide affinity of alkaline earth metals. Moreover, we introduce a novel solution-chemistry capable of dissolving alkaline earth metal sulfides, enabling the synthesis of BaMS3 compounds from metal sulfide precursors. While the BaSx liquid flux has shown promise, we identify the selenium liquid flux as an alternative method for synthesizing BaMS3 compounds.
- This article is part of the themed collection: 2024 Journal of Materials Chemistry C Most Popular Articles