A pectin-based artificial nociceptor enabling actual tactile perception†
Abstract
Developing green and biodegradable electronic devices with nociceptor functions is a crucial step in transmitting external stimuli to the internal neural system. A biopolymer is a good choice for a natural nociceptor because of its simple preparation process, low cost, high biocompatibility, and abundant sources. This paper reports a flexible memristor based on a polysaccharide–pectin polymer and the tactile perception function is verified by integrating this device into a tactile sensing system. The bionic tactile sensing system also exhibits a fast and obvious response toward different levels of pressure like a biological organism. Meanwhile, the results imply that the flexible Ag/pectin/ITO memristor has an obvious threshold-switching behavior according to voltage stimulation and other characteristics; e.g., sensitization, relaxation, and non-adaptation are achieved, which provide great potential as an artificial nociceptor of this device. Additionally, the flexible Ag/pectin/ITO/PET device shows robust performance (validating all the key characteristics as a nociceptor) after bending, suggesting high stability and good flexibility.