Issue 1, 2024

Separation of coal combustion residue for critical element extraction and other bulk uses

Abstract

The demand for critical and rare earth elements is surging and coal combustion residue could be an alternate source of critical elements. Data on the concentration of critical and rare earth elements (REYs) in different size fractions of fly ash would help in segregation of the ash. This study was conducted with the objective of examining the possibility of separation of coal ash into a size fraction useful for element extraction and the rest for bulk uses like cement, concrete, landfill, roads, embankments, etc. The concentration of critical elements, their partitioning in different size ash particles (>500 to <25 μm), and their chemical association were determined for a coal fly ash sample from Talcher, India. The total REY concentration in the ash varied between 440 and 529 mg kg−1, wherein the contents were relatively higher for Nd (75–103 mg kg−1) followed by Ce (58.3–88.7 mg kg−1), La (41.6–80.3 mg kg−1), Sm (39.0–79.3 mg kg−1), and Y (38.4–49.3 mg kg−1). The REY outlook coefficient of the raw ash (1.03) is more than 0.7 and accordingly this fly ash can be considered as an interesting source of rare earth elements. This factor was further enhanced to 2.3 in the coarse ash particles of size > 250 μm. Sequential extraction showed that most of the rare and critical elements are associated with the alumino-silicate matrix. The Al2O3 content of this ash is relatively high (25%), so there is scope for co-extraction of Al along with the rare earth elements. The ash disposal and utilization policy should consider the separation and preservation of the coarse ash fraction (>250 μm) for the extraction of critical and rare earth elements.

Graphical abstract: Separation of coal combustion residue for critical element extraction and other bulk uses

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2023
Accepted
13 Nov 2023
First published
14 Nov 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Adv., 2024,3, 109-118

Separation of coal combustion residue for critical element extraction and other bulk uses

K. K. Karan, R. E. Masto, H. Agarwalla, S. Bari, M. Kumar, P. Gopinathan, B. Hazra, S. Saha and S. Maity, Environ. Sci.: Adv., 2024, 3, 109 DOI: 10.1039/D3VA00186E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements