Issue 9, 2024

Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance

Abstract

The immense demand for electrical energy motivated us to manipulate solar energy by means of conversion through solar cells (SCs). Advancements in photovoltaic (PV) technology are occurring very rapidly. In recent years, extensive research has been conducted on halide perovskite-based SCs because of their superior optoelectronic properties, enhanced efficiency, lightweight nature, and low cost. However, concerns have arisen regarding their longevity, stability, and commerciality due to the presence of toxic lead (Pb). The most prominent purpose of this investigation is to discover additional efficient, sustainable, and eco-friendly device architectures. In this study, we investigated an all-inorganic, lead-free rubidium germanium iodide (RbGeI3)-based PSC device with the assistance of the SCAPS-1D simulator. Several electron transport layers (ETLs) and hole transport layers (HTLs) were incorporated with the perovskite layer, and an efficient primary structure was discovered. Then, the impact of temperature; back metal work function; series and shunt resistance; surface recombination velocity of carriers; thickness of the perovskite absorber layer, electron transport material (ETM), and hole transport material (HTM); carrier concentration of the perovskite absorber layer, ETM, and HTM; defect density of the perovskite absorber layer, ETM, and HTM; and defect density of the HTL/absorber and absorber/ETL interfaces on the PV performance of the proposed PSC device was analyzed. The optimized device exhibited a power conversion efficiency (PCE) of 30.35%, with superior values for open circuit voltage (Voc), short circuit current density (Jsc), and fill factor (FF) of 1.067 V, 33.15 mA cm−2, and 85.82%, respectively. The investigations in this study may be valuable and impactful to solar cell material researchers and move the research interest forward by one step so that experimental work with non-toxic RbGeI3-based PSC devices will be performed in the future.

Graphical abstract: Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance

Article information

Article type
Paper
Submitted
22 May 2024
Accepted
26 Jul 2024
First published
08 Aug 2024
This article is Open Access
Creative Commons BY license

Energy Adv., 2024,3, 2377-2398

Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance

Md. M. Rahman, Md. H. Ali, Md. D. Haque and A. Z. Md. Touhidul Islam, Energy Adv., 2024, 3, 2377 DOI: 10.1039/D4YA00323C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements