Issue 8, 2025

Excitation–emission matrix spectroscopy coupled with chemometrics for monitoring ozonation of olive oil and olive pomace oil

Abstract

The effects of ozonation on the Total Polyphenol Content (TPC) of olive oils remain largely unexplored, despite the significant role that polyphenols play in enhancing the health benefits and quality of these oils. Understanding how ozone treatment impacts phenolic compounds is vital, especially considering the documented negative effects of thermal and photochemical oxidation on TPC. The aim of this study was to explore the use of fluorescence spectroscopy combined with chemometrics to develop multivariate models for monitoring the effects of ozonation on TPC and key physicochemical parameters such as the peroxide index (PI), acidity index (AI), iodine value (IV) and viscosity (V) in both, virgin and pomace olive oils. Parallel factor analysis and principal component analysis of fluorescence excitation–emission matrices (EEMs) of ozonated olive oils revealed that as the ozonation process progressed, TPC and fluorescence emission decreased. And, at the same time, ozonation increased the values of oxidation indicators such as PI, AI, viscosity and intensity of the Rayleigh scattering signal. PLS models based on analysis of unfolded EEMs exhibited good predictive performance for PI (R2 = 0.822; RPD > 2.5), and moderate for TPC and V (R2 = 0.792 and 0.753; RPD > 2). In summary, we demonstrated the feasibility of EEM spectroscopy for monitoring the ozonation process. The use of this method can ease the characterization of ozonated olive oils and, additionally, make the analysis more sustainable.

Graphical abstract: Excitation–emission matrix spectroscopy coupled with chemometrics for monitoring ozonation of olive oil and olive pomace oil

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2024
Accepted
14 Jan 2025
First published
07 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Anal. Methods, 2025,17, 1860-1869

Excitation–emission matrix spectroscopy coupled with chemometrics for monitoring ozonation of olive oil and olive pomace oil

P. Domínguez-Lacueva, E. Sikorska and M. J. Cantalejo-Díez, Anal. Methods, 2025, 17, 1860 DOI: 10.1039/D4AY02267J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements