Issue 12, 2025

Covalent organic frameworks and their composites as enhanced energy storage materials

Abstract

The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications. These findings are significant for meeting the demand for reliable and sustainable energy storage materials in order to save energy for a better future of mankind. As the demand for reliable and sustainable energy storage materials is increasing, the scientific community is more focussed towards the development of covalent organic frameworks (COFs). The high surface area, thermal and chemical stability, structural tunability, porosity, and low density of COFs make them appropriate for energy storage applications. Their potential to produce advanced energy storage devices with better performance and durability is further reinforced by their ability to be customized for specific applications and amplified for conductive materials. This review covers the designs and synthetic techniques of COFs and their composites specifically suitable for energy storage uses. It further highlights their use as cathode and anode materials in supercapacitors, COF based electrolytes and batteries. The review further includes the flexibility and efficiency of COFs in energy storage applications. Furthermore, it addresses the challenges and their potential solutions regarding the use of COFs in energy storage devices. By providing a comprehensive understanding of the advantages and limitations of COFs, this review aims to inform and inspire future advancements in energy storage technologies.

Graphical abstract: Covalent organic frameworks and their composites as enhanced energy storage materials

Article information

Article type
Highlight
Submitted
11 Sep 2024
Accepted
03 Jan 2025
First published
07 Jan 2025

Chem. Commun., 2025,61, 2403-2423

Covalent organic frameworks and their composites as enhanced energy storage materials

D. Divya, H. Mishra and R. Jangir, Chem. Commun., 2025, 61, 2403 DOI: 10.1039/D4CC04688A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements