Issue 5, 2025

AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols and aldehydes: enabling the diastereoselective synthesis of [6,6,6]-trioxa-fused ketals and hexahydro-2H-chromenes

Abstract

We report the unprecedented diastereoselective synthesis of novel [6,6,6]-trioxa-fused ketals via AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols (with primary or secondary hydroxyl groups) and aldehydes through a [2+2+1+1] pathway. In contrast, 5-hexyn-1-ols with tertiary hydroxyl groups yield hexahydro-2H-chromenes via a [3+1+1+1] pathway.

Graphical abstract: AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols and aldehydes: enabling the diastereoselective synthesis of [6,6,6]-trioxa-fused ketals and hexahydro-2H-chromenes

Supplementary files

Article information

Article type
Communication
Submitted
18 Oct 2024
Accepted
09 Dec 2024
First published
10 Dec 2024

Chem. Commun., 2025,61, 973-976

AgOTf-catalyzed cascade annulation of 5-hexyn-1-ols and aldehydes: enabling the diastereoselective synthesis of [6,6,6]-trioxa-fused ketals and hexahydro-2H-chromenes

R. Vinodkumar, A. K. Nakate, G. R. Krishna and R. Kontham, Chem. Commun., 2025, 61, 973 DOI: 10.1039/D4CC05546B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements